

General Description

The KSP4616 uses advanced trench technology and design to provide excellent R_{DS}(ON) with low gate charge. It can be used in a wide variety of applications.

SOP-8 Pin Configuration

Product Summary

	V _{DS} (V)	$R_{DS(on)}$ (m Ω)	I _D (A)
N-ch	20	12 at VGS = 10 V	9
IN-CIT	30	19 at VGS = 4.5 V	7.6
P-ch	-30	12 at VGS = 10 V	-9
1 -011		18 at V _G S = 4.5 V	-7.7

Features

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Applications

- H-bridge
- Inverters

Absolute Maximum Ratings Tc=25°C unless otherwise noted

Symbol	Parameter	N-ch Rating	P-ch Rating	Units	
V _{DS}	Drain-Source Voltage	30	-30	V	
V _G s	Gate-Source Voltage	±20	±20	V	
	Drain Current – Continuous (T _C =25°C)	9	30 -30 ±20 ±20	А	
lD	Drain Current – Continuous (T _C =100℃)	6.6	-6.8	А	
I _{DM}	Drain Current – Pulsed¹	48	-48	А	
D.	Power Dissipation (T _C =25°C)		1.5	W	
P _D	Power Dissipation (T _C =100°C)		0.05	W/°C	
T _{STG}	Storage Temperature Range	-55	-55 to 150		
TJ	Operating Junction Temperature Range	-55	to 150	°C	

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction to ambient		51	°C/W
Rejc	Thermal Resistance Junction to Case		3.2	°C/W

N-Channel Electrical Characteristics (TJ=25 ℃, unless otherwisenoted)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30			V
la a a	Danier Common Lordon Commont	V _{DS} =30V , V _{GS} =0V , T _J =25°C			1	uA
IDSS	Drain-Source Leakage Current	V _{DS} =30V , V _{GS} =0V , T _J =125℃		1 10	uA	
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA

On Characteristics

R _{DS(ON)} Static Drain-Source On-Resistance	Static Drain Source On Posictance	V_{GS} =10 V , I_{D} =8 A		12	16	mΩ
	V_{GS} =4.5 V , I_D =6 A		19	25	mΩ	
$V_{GS(th)}$	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250uA	1.0	1.5	3	V
gfs	Forward Transconductance	V _{DS} =10V , I _S =6A		20		S

Dynamic and switching Characteristics

Qg	Total Gate Charge		 22	
Q_gs	Gate-Source Charge	V_{DS} =15V , V_{GS} =10V , I_{D} =8A	 4.5	 nC
Q_{gd}	Gate-Drain Charge		 4	
$T_{d(on)}$	Turn-On Delay Time		 8	
Tr	Rise Time	Vps=15V, Ip=8A	 7	 ns
$T_{d(off)}$	Turn-Off Delay Time	Vgs=10V,Rg=1Ω	 26	 115
Tf	Fall Time		 9	
C _{iss}	Input Capacitance		 1560	
Coss	Output Capacitance	V_{DS} =15V , V_{GS} =0V , F=1MHz	 210	 pF
Crss	Reverse Transfer Capacitance		 190	

Drain-Source Diode Characteristics and Maximum Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			9	Α
I _{SM}	Pulsed Source Current	VG-VD-UV, FOICE Current			18	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =1A , T _J =25℃			1.2	V

N-Channel Typical Electrical and Thermal Characteristics (Curves)

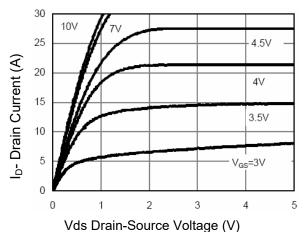
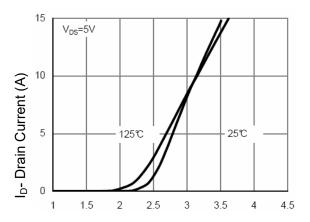



Fig.1 Output Characteristics

Vgs Gate-Source Voltage (V)
Fig. 2 Transfer Characteristics

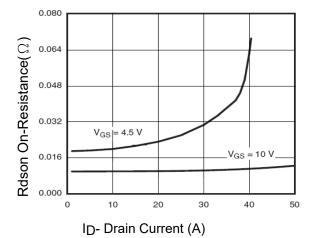


Fig. 3 Rdson- Drain Current

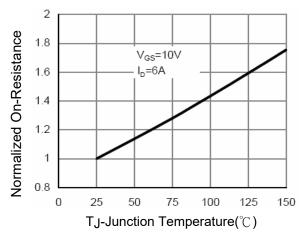
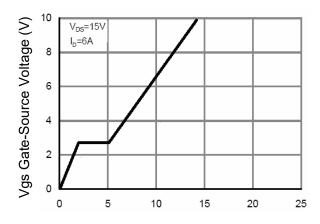
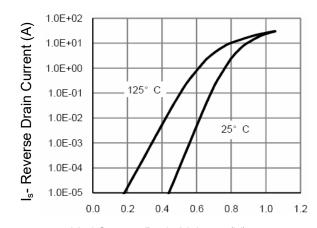
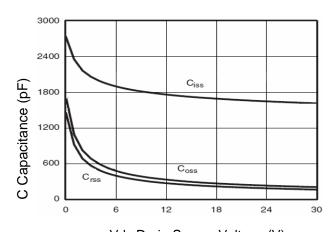




Fig. 4 Drain-Source On-Resistance


Qg Gate Charge (nC) Fig. 5 Gate Charge

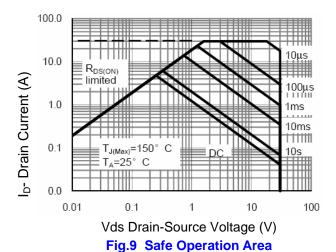

Vsd Source-Drain Voltage (V)

Fig. 6 Source- Drain Diode Forward

Vds Drain-Source Voltage (V) Figu.7 Capacitance vs Vds

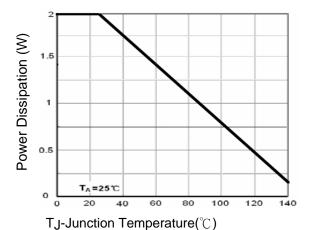


Fig. 8 Power De-rating

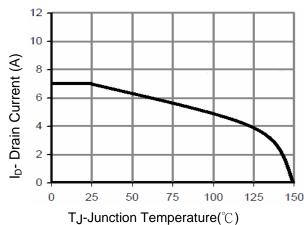
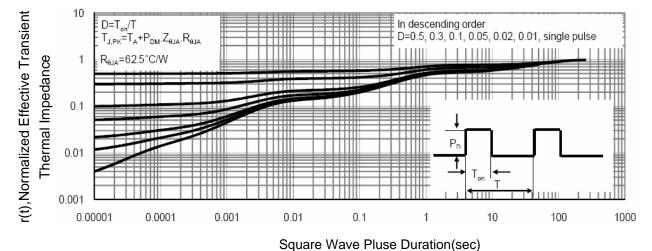



Fig. 10 ID Current- Junction Temperature

Fig.11 Normalized Maximum Transient Thermal Impedance

P-Channel Electrical Characteristics (T_J=25 °C, unless otherwisenoted)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-30			V
,	Dunin Course Looks and Course	V _{DS} =-30V , V _{GS} =0V , T _J =25℃			-1	uA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =-30V , V _{GS} =0V , T _J =125℃		1 10	uA	
Igss	Gate-Source Leakage Current	V_{GS} =±20 V , V_{DS} =0 V			±100	nA

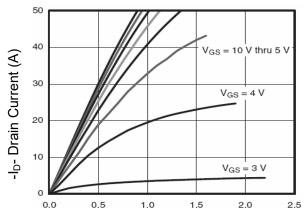
On Characteristics

R _{DS(ON)} Static Drain-Source On-Resistance	Static Drain Source On Pecietance	V _{GS} =-10V , I _D =-8A		12	16	mΩ
	V _{GS} =-4.5V , I _D =-5A		18	25	mΩ	
$V_{GS(th)}$	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250uA	-1.0	-1.5	-3	V
gfs	Forward Transconductance	V _{DS} =-5V , I _S =-5A		20		S

Dynamic and switching Characteristics

Qg	Total Gate Charge		 26	
Q_{gs}	Gate-Source Charge	V_{DS} =-15V , V_{GS} =-10V , I_{D} =-8A	 4.8	 nC
Q_{gd}	Gate-Drain Charge		 7.2	
T _{d(on)}	Turn-On Delay Time		 10	
Tr	Rise Time	V _D s=-15V, I _D =8A	 9	 ns
$T_{d(off)}$	Turn-Off Delay Time	Vgs=-10V,Rg=6Ω	 29	 115
T _f	Fall Time		 11	
Ciss	Input Capacitance		 1880	
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , F=1MHz	 210	 pF
C _{rss}	Reverse Transfer Capacitance		 186	

Drain-Source Diode Characteristics and Maximum Ratings


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			-9	Α
Іѕм	Pulsed Source Current				-22	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =-1A , T _J =25℃			-1.2	V

Note:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}$ C,V_{DD}=-15V,V_G=-10V,L=0.5mH,Rg=25 Ω ,I_{AS}=-26A

P-Channel Typical Electrical and Thermal Characteristics (Curves)

-Vds Drain-Source Voltage (V)Fig.1 Output Characteristics

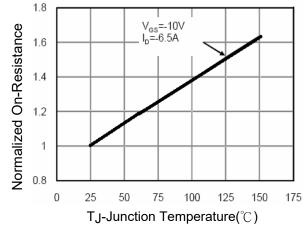


Fig. 4 Rdson-JunctionTemperature

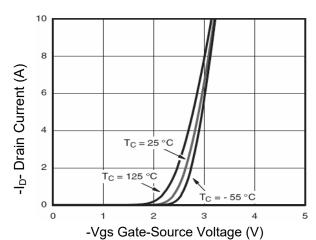
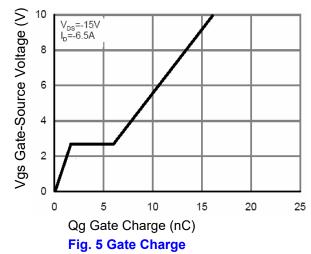
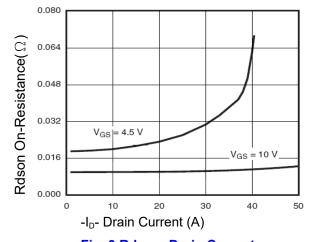
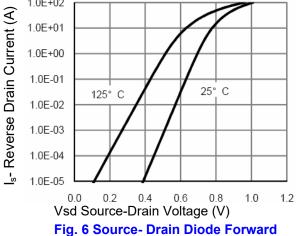
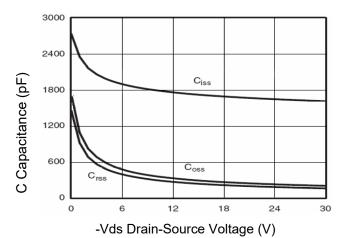
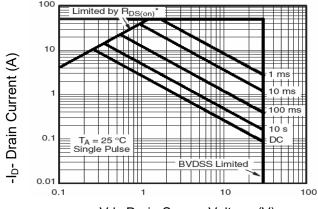



Fig. 2 Transfer Characteristics


Fig. 3 Rdson- Drain Current

Figu.7 Capacitance vs Vds

-Vds Drain-Source Voltage (V)Fig.9 Safe Operation Area

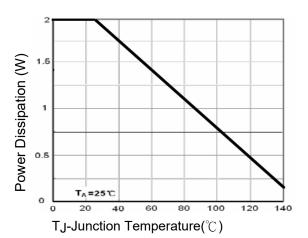
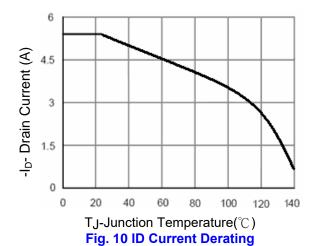



Fig. 8 Power De-rating

r(t),Normalized Effective Transient Duty Cycle = 0.5 Thermal Impedance 0.2 Notes 0.05 0.02 1. Duty Cycle, D = 2. Per Unit Base = R_{thJA} 3. $T_{JM} - T_A = P_{DM}Z_{thJA}^{(t)}$ Single Pulse 4. Surface Mounted 0.01 10-2 10⁻³ 10⁻¹ 10⁻⁴ 1000 Square Wave Pluse Duration(sec)

Fig.11 Normalized Maximum Transient Thermal Impedance

Disclaimer

- 1. Any and all Korsun Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Korsun Semiconductor representative nearest you before using any Korsun Semiconductor products described or contained herein in such applications.
- 2.Korsun Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Korsun Semiconductor products described or contained herein.
- 3. Specifications of any and all Korsun Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- 4. Korsun Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- 5.In the event that any or all Korsun Semiconductor products(including technical data, services described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- 6. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Korsun Semiconductor CO.,LTD.
- 7. Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Korsun Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- 8. Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Korsun Semiconductor product that you intend to use.
- 9. This catalog provides information as of Sep.2010. Specifications and information herein are subject to change without notice.