

Features

Low Power Consumption: 60uA (Typ)

Maximum Output Current: 500mA

 Small Dropout Voltage 100mV@100mA (Vout=3.3V)

PSRR=75dB@1KHz

• Input Voltage Range: 2.0V~8.0V

 Output Voltage Range: 1.2V~3.6V (customized on command in 0.1V steps)

• Standby Current : less than 1µA

High Accurate: ±2%

Good Transient Response

Over-Temperature Protection

Support Fixed Output Voltage

Output Current Limit

Stable with Ceramic Capacitor

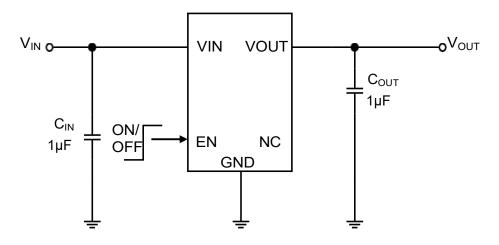
 Available Package SOT23-5 \ DFN1x1-4

RoHS Compliant and Lead (Pb) Free

Application

Portable, Battery Powered Equipment

Audio/Video Equipment


Power Management of MP3. PDA.....

• Weighting Scales. Home Automation

Description

The HE2211 series are highly precise, low noise, positive voltage LDO regulators manufactured using CMOS processes. The series achieves high ripple rejection and low dropout and consists of a standard voltage source, an error correction, current limiter and a phase compensation circuit plus a driver transistor. Output voltage is selectable in 0.1V increments within a range of 1.2V \sim 3.6V. The series is also compatible with low ESR ceramic capacitors which give added output stability. This stability can be maintained even during load fluctuations due to the excellent transient response of the series. The limiter's feedback circuit also operates as a protect for the output current limiter The EN function enables the output to be turned off, resulting in greatly reduced power consumption. The HE2211 consumes less than 1 μ A in shutdown mode and has fast turn-on time less than 50s. The other features include ultra low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio.

Application Circuits

Ver1.0 1 Aug 29,2021

Selection Table

Part No.	Output Voltage	Package	Marking
HE2211A12M5R	1.2V		
HE2211A15M5R	1.5V		
HE2211A18M5R	1.8V		
HE2211A25M5R	2.5V	SOT23-5	
HE2211A28M5R	2.8V		
HE2211A30M5R	3.0V		
HE2211A33M5R	3.3V		
HE2211A36M5R	3.6V		Refer to Marking rule
HE2211A12D4R	1.2V		Trefer to Marking rate
HE2211A15D4R	1.5V		
HE2211A18D4R	1.8V		
HE2211A25D4R	2.5V	DFN1x1-4	
HE2211A28D4R	2.8V	DENTAT-4	
HE2211A30D4R	3.0V		
HE2211A33D4R	3.3V		
HE2211A36D4R	3.6V		

Package and Pin assignment

SOT23-5 (Top View)

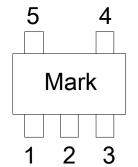
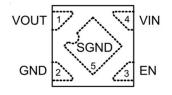



Table1: HE2211AXXM5R series (SOT23-5 PKG)

PIN NUMBER	SYMBOL	FUNCTION
1	V_{IN}	Power Input Pin
2	GND	Ground
3	CE	Chip Enable Pin
4	NC	No Connection
5	V_{OUT}	Output Pin

Table2: HE2211AXXD4R series (DFN1*1-4LPKG)

DFN1x1-4L (Top View)

PIN NUMBER	SYMBOL	FUNCTION
1	V_{OUT}	Output Pin
2	GND	Ground
3	CE	Chip Enable Pin
4	V_{IN}	Power Input Pin
5	SGND	Substrate of Chip. Leave floating or tie to GND

Ver1.0 2 Aug 29,2021

Absolute Maximum Ratings (1)(2)

Paramet	Parameter		Maximum Rating	Unit
Input Volte	200	Vin	V _{SS} -0.3~V _{SS} +8.0	V
Input Volta	ige	Von/off	V _{SS} -0.3~V _{IN} +0.3	V
Output Cur	rent	Іоит	600	mA
Output Volt	age	Vouт	V _{SS} -0.3~V _{IN} +0.3	V
	SOT23-5	Pd	250	mW
Power Dissipation	DFN1x1-4	I U	400	11100
Thermal Resistance	SOT23-5	R _{0JA} ⁽³⁾	400	°C/W
Thermal Nesistance	DFN1x1-4	(Junction-to-ambient thermal resistance)	250	°C/W
Operating Tem	perature	Topr	-40~85	$^{\circ}\!\mathbb{C}$
Storage Temp	erature	Tstg	-40~125	$^{\circ}\!\mathbb{C}$
Soldering Tempera	ture & Time	Tsolder	260℃, 10s	

Note (1): Exceeding these ratings may damage the device.

ESD Ratings

Item	Description	Value	Unit
	Human Body Model (HBM)		
V(ESD-HBM)	ANSI/ESDA/JEDEC JS-001-2014	±4000	V
	Classification, Class: 2		
	Charged Device Mode (CDM)		
V(ESD-CDM)	ANSI/ESDA/JEDEC JS-002-2014	±400	V
	Classification, Class: C0b		
	JEDEC STANDARD NO.78E APRIL 2016	1200	ъъ Л
ILATCH-UP	Temperature Classification, Class: I	±200	mA

ESD testing is performed according to the respective JESD22 JEDEC standard. The human body model is a 100 pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

Recommended Operating Conditions

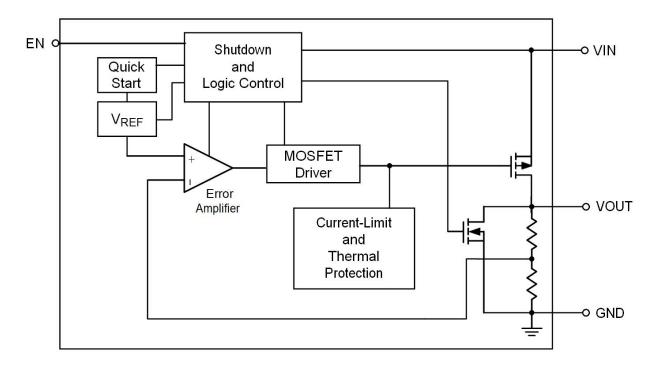
Parameter	MIN.	MAX.	Units
Supply voltage at Vin	2.0	8.0	V
Operating junction temperature range, Tj	-40	125	°C
Operating free air temperature range, TA	-40	85	°C

Note: All limits specified at room temperature (TA = 25°C) unless otherwise specified. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured through correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Ver1.0 3 Aug 29,2021

Note (2): The device is not guaranteed to function outside of its operating conditions

Note (3): The package thermal impedance is calculated in accordance to JESD 51-7.


Electrical Characteristics

(Test Conditions:VIN=4.3V, VOUT=3.3V,CIN=1uF, COUT=1uF,TA=25°C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Voltage	Vin		-0.3		8.0	V
Supply Current	lq	Vin > Vout ,EN=Vin Iload=0mA	_	60	_	uA
Standby Current	Іѕтву	V _{EN} = GND, Shutdown	_	1	_	uA
Output Voltage	Vоит	V _{IN} =V _{set} +1.0V I _{OUT} =40mA	Vset*0.98	Vset	Vset*1.02	V
Maximum Output Current	Іоυт(Мах)	VIN=VOUT+1.0V	_	500	_	mA
Dropout Voltage	VDROP	Iоит=100mA	_	100	_	mV
Dropout voltage	VDROP	Iоит=200mA	_	220		IIIV
Line Regulation	ΔVout/ ΔVin•Vout	I _{OUT} =40mA (V _{set} +1.0v) ≦ V _{IN} ≦ 8.0V	_	0.05	_	%/V
Load Regulation	ΔVουτ	V _{IN} =V _{set} +1.0V 1mA≦Iouт≦100mA	_	50	_	mV
Current Limit	Інміт		_	600	_	mA
Power Supply Rejection Rate	PSRR	V _{IN} =V _{set} +1.0V f=1KHz,I _{OUT} = 40mA	_	75	_	dB
EN Threshold	VIL	V _{IN} =3V~ 5.5V, Shutdown	_	_	0.4	V
Voltage	Vih	Vı⊳=3V~ 5.5V, Start-Up	1.1	_	_	V
Output Noise Voltage	е мо	Iо∪т=40Ма BW = 300Hz~50kHz	_	50	_	uVRMS
Output Voltage Temperature Coefficient	ΔVουτ/ ΔΤ•Vουτ	Іоит=1 0mA	_	100	_	ppm/℃

Function Block Diagram

Application Guideline

Input Capacitor

A $1\mu F$ ceramic capacitor is recommended to connect between V_{DD} and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is $1\mu F$, ceramic capacitor is recommended, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to VOUT and GND pins.

Dropout Voltage

The dropout voltage refers to the voltage difference between the VIN and VOUT pins while operating at specific output current. The dropout voltage VDROP also can be expressed as the voltage drop on

Ver1.0 5 Aug 29,2021

the pass-FET at specific output current (IRATED) while the pass-FET is fully operating at ohmic region and the pass-FET can be characterized as an resistance RDS(ON). Thus the dropout voltage can be defined as (VDROP = VIN - VOUT = RDS(ON) x IRATED). For normal operation, the suggested LDO operating range is (VIN > VOUT + VDROP) for good transient response and PSRR ability. Vice versa, while operating at the ohmic region will degrade the performance severely.

Thermal Application

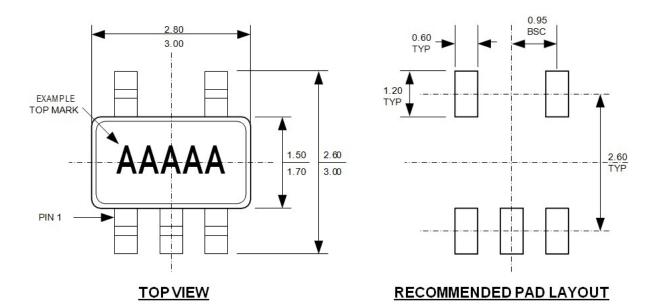
For continuous operation, do not exceed the absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated as below: TA=25°C, PCB,

The max PD= (125°C - 25°C) / (Thermal Resistance °C/W)

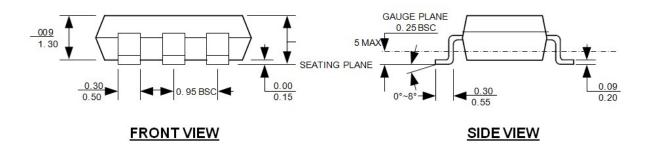
Power dissipation (PD) is equal to the product of the output current and the voltage drop across the output pass element, as shown in the equation below:

 $PD = (VIN - VOUT) \times IOUT$

Layout Consideration

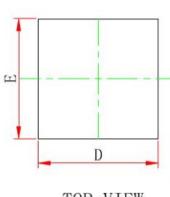

By placing input and output capacitors on the same side of the PCB as the LDO, and placing them as close as is practical to the package can achieve the best performance. The ground connections for input and output capacitors must be back to the HE2211 ground pin using as wide and as short of a copper trace as is practical. Connections using long trace lengths, narrow trace widths, and/or connections through via must be avoided. These add parasitic inductances and resistance that results in worse performance especially during transient conditions.

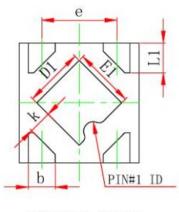
Ver1.0 6 Aug 29,2021


Packaging Information

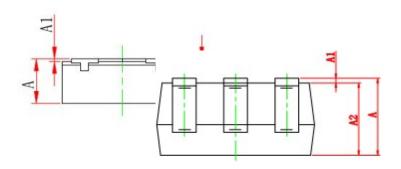
SOT23-5

TOP VIEW


RECOMMENDED PAD LAYOUT



Packaging Information


DFN1x1-4

TOP VIEW [顶视图]

BOTTOM VIEW [背视图]

Symbol	Dimensions I	n Millimeters	Dimension	s In Inches
	Min.	Max.	Min.	Max.
Α	0.335	0.405	0.013	0.016
A1	0.000	0.050	0.000	0.002
A2	0.100	REF.	0.004REF.	
D	0.950	1.050	0.037	0.041
E	0.950	1.050	0.037	0.041
D1	0.450	0.550	0.018	0.022
E1	0.450	0.550	0.018	0.022
k	0.195	REF.	0.007	7REF.
b	0.175	0.275	0.007	0.011
е	0.575	0.675	0.023	0.027
L1	0.200	0.300	0.008	0.012

Ver1.0 8 Aug 29,2021